
N92-22339

DESIGN FOR INTERACTION BETWEEN

HUMANS AND INTELLIGENT SYSTEMS

DURING REAL-TIME FAULT MANAGEMENT

Jane T. Malin
Johnson Space Center
Houston, TX 77058
malin @ aio. jsc. nasa. gov.

Debra L. Schreckenghost
TheMITRECorporation
1120 NASA Road One
Houston, TX 77058
schreck @ aio. jsc. nasa. gov.

Carroll G.Thronesbery
The MITRE Corporation
1120 NASA Road One
Houston, TX 77058
tbery @ aio. jsc. nasa. gov.

ABSTRACT

Initial results are reported from interdisciplinary

projects to provide guidance and assistance for
designers of intelligent systems and their human
interfaces. The objective is to achieve more

effective human-computer interaction (HCI) for

real-time fault management support systems.
Studies of the development of intelligent fault

management systems within NASA have resulted
in a new perspective of the user. If the user is
viewed as one of the subsystems in a
heterogeneous, distributed system, system design

becomes the design of a flexible architecture for
accomplishing system tasks with both human and
computer agents. HCI requirements and design

should be distinguished from user interface
(displays and controls) requirements and design.

Effective HCI design for multi-agent systems
requires explicit identification of activities and
information that support coordination and
communication between agents. We characterize

the effects of HCI design on overall system design
and identify approaches to addressing HCI

requirements in system design. Our results
include definition of (1) guidance based on
information-level requirements analysis of HCI,

(2) high-level requirements for a design
methodology that integrates the HCI perspective

into system design, and (3) requirements for
embedding HCI design tools into intelligent

system development environments.

INTRODUCTION

Two multi-year, interdisciplinary projects are
currently in progress to develop technology that

helps developers of intelligent systems with real-

time fault management capabilities achieve more
effective human-computer interaction (tlCI)
design. The objective of the work is to specify

requirements for methods and tools and to

provide design guidance to assist developers in

making intelligent systems better team players.
Intelligent systems can be viewed as computer
agents that share the task of process monitoring
and control with human agents. An important

part of designing the intelligent system is to
specify how these human and computer agents
will interact and what information they will

exchange to be an effective fault management
team.

Mitchell (1987)has observed that functional

requirements for complex systems rarely specify
information needed to support tasks of human

controllers or operators. Yet, real-time
interactive process control software usually

requires that the needed information be easily
accessible and discernible. This is especially true
when this software includes intelligent systems to

provide advanced support for human operators.
Intelligent systems can provide additional
information at a higher level of abstraction (e.g.,
reasoning about faults in addition to fault

signatures in numeric data), but can also increase
the need to coordinate and to monitor the

software. Lack of integration of HCI information

requirements into the functional requirements
specification is an important problem in the

design of real-time interactive process control
software. It is even more critical when such

software includes an intelligent system

component.

However, user interface (UI) and HCI analysis
and design has traditionally been viewed as
relevant not to the functional requirements, but
rather to the non-functional constraints (Roman,

1985), which are often applied later in software

development. As Marshall (1991) phrases it,
there is a common perception that human factors

specialists "should be brought in to sprinkle magic
dust on the interface or workstation once it is

530

largely developed." But deferring analysis of all
types of HCI needs until late in system
development contributes to lack of system support
for the operator tasks. HCI considerations,
however, can affect what the intelligent system
does (i.e., its functionality) as well as constrain
how the intelligent system is implemented.

The problem is due partly to a confusion between
HCI requirements analysis and UI design.
Human-computer interaction requirements refer
to the information exchange between the user and
the computer when performing the task which the
software system is intended to support. The user
interface design, on the other hand, concerns the
display and control software and hardware that
are the media for information presentation and
dialog with the user. One of the dangers of
confusing HCI and UI is the tendency to overlook
task-level information needs (e.g., information
needed to make a good decision), while focusing
on physical interface characteristics (e.g., icon
shapes and colors) and low-level interface
functions (e.g., radio buttons and pull-down
menus). This danger is described in detail by
Woods and Eastman (1989) while introducing
their "levels" of display design approach.

Specification of HCI requirements is critical in
design of real-time, interactive intelligent systems.
Focusing on screen display and low-level
interaction sequences can lead to ignoring the
more global issues of whether the right
information is flowing between the software
system and the user at the right time. Therefore,
it is important to clarify the UI/HCI distinction
and tackle the problem of including consideration
of HCI information exchange requirements in
development methods and tools.

METHODS

In one of the two projects, intelligent fault
management systems within NASA have been
evaluated for insight into the design of systems
with complex HCI (Malin et al., 1991). Fifteen
intelligent systems were selected from a variety of
aerospace programs, including Space Shuttle,
Space Station, unmanned spacecraft, and military
and advanced aircraft. Information was collected
by interviewing intelligent system developers and
users, observing intelligent system
demonstrations, and referencing available
documentation about applications. In one case,
participation in the design of the Space Shuttle
Payload Deployment and Retrieval System
(PDRS) Decision Support System (DESSY)

project permitted first-hand observation of the
design process and provided an opportunity to test
design recommendations and develop examples of
design guidance.

The other project has focused on conceptual
design and prototyping of methods and tools for
development of intelligent systems and their user
interfaces. A prototype software toolkit, User-
Intelligent System Interface Toolkit (UISIT), has
been developed to support a methodology for
developing conceptual designs for interactive
intelligent systems and their user interfaces. An
evaluation of UISIT prototype tools and methods
is now being conducted in an application case.
UISIT-based methods and tools are being used to
support the PDRS DESSY project, to develop a
prototype intelligent fault management support
system. The purpose of this effort is to evaluate
the underlying HCI development methodology and
its support by the tools.

RESULTS

Preliminary results of this work indicate that the
concept of information requirements is the
productive focus for identifying needed
modifications and additions to traditional

methods, guidelines and tools. Information
requirements identify the information which must
be exchanged between the user and the intelligent
system in order to support user tasks. Specifically
addressing information exchange requirements
helps the designer to elaborate what capabilities
the intelligent system and the UI will need to have
before determining exactly how to implement
these capabilities. As such, these are an important
subset of the external interface requirements
specification. Information requirements also help
to coordinate the design of the user interface and
the application software.

Our solutions to the problems outlined above can
be partitioned into the following areas, which
outline what it will take elevate HCI requirements
to the level of functional requirements: 1) HCI
Design Guidance for Information Requirements,
2) Development Methodology for Information
Requirements, 3) User Interface Tools and
Methods for Information Requirements.

1. HCI Design Guidance for Information
Requirements

Current forms of guidance should be extended to
support the development of information exchange
requirements.

531

Traditional guidance focuses primarily on visual
appearance and style, offering little assistance in
designing an intelligent system and its user
interface which provides the right information to
support user task performance. The example in
Figures 1 and 2 illustrates this new guidance and
its emphasis on information exchanged between
the human and the computer. This guidance
assists designers in determining the information
which is required from the intelligent system for
the display. It is relevant to decisions made early
in the development process that constrain the
information available for display. Unlike
decisions about how to display information, they
can not be deferred until later in the development
process. This design guidance can help the HCI
designer be more effective in identifying
requirements for both the intelligent system and
the user interface. Early involvement of the HCI
designer in intelligent system development helps
to integrate the efforts of the HCI designer and
the intelligent system designer.

2. Development Methodology for
Information Requirements

Another approach to elevating the consideration
of HCI information exchange requirements is to
provide an intelligent system development
methodology that incorporates HCI considerations
as an integral part of design. Such a methodology
features the explicit specification of information
requirements, including application of the new
guidance identified above.

Initial research efforts (Johns, 1990; Malin et al.,
1991) have resulted in a new perspective of the
user -- the user as another type of agent in a
heterogeneous, cooperating, distributed system.
System design then becomes the design of an
architecture for accomplishing domain tasks with
the available human (i.e., users) and computer
(i.e., applications) agents. HCI considerations are
an important part of such system design, even
before user interface design is addressed. We
have defined the following stages in developing
such a system (illustrated in Figure 3):

• Description of domain tasks. Monitoring
and fault management tasks, whether performed
by humans or software, are described in terms of
goals and the actions required to achieve these
goals. These goals and actions need not yet be
assigned to specific types of agents.

• Identification of resources provided to
perform tasks and the constraints that affect task
performance. Resources include the capabilities
of the operational environment and of the agents,
and the availability of information. Constraints
result from complexity, dynamics, and
deficiencies in these resources.

• Specification of agent activities and valid
agent behaviors in an architecture for multi-
tasking and dynamic task allocation. Actions
defined in the task description are assigned as
specific agent activities consistent with the
available resources and the inherent constraints of
the fault management team and the operational
environment. The task description is not
complete until it includes activities supporting
both domain task performance and coordination
between agents of the fault management team.
Note the implications for modification of task
analysis and task description techniques to capture
human-computer coordination activities.

• Evaluation of the activity specification
using expected operational scenarios. The
specification of agent activities is evaluated using
complex, realistic activity sequences and modes of
agent interaction to derive the information and
functionality requirements. These scenarios
should include tasks shared by multiple agents
supporting both agent coordination and control of
the monitored process, they should include both
nominal and anomalous activity sequences, and
they should highlight information used and
exchanged to support each task.

• Analysis of information exchange
requirements. Requirements for information are
explicitly identified for both the intelligent system
and the user interface, based on results of the

evaluation using operational scenarios.

3. User Interface Tools and Methods for
Information Requirements

A third way to promote the consideration of HCI
information exchange requirements involves user
interface tools and methods. User interface tools

should support:
• Information requirements development
• Design team communication
• Run-time software module communication

User interface tools should support information
requirements development and use as well as user
interface design and management. Designing the
HCI so that the end user always has the right

532

EXAMPLE OF HCI DESIGN GUIDANCE

Topic: Intervention Into Intelligent System Reasoning Process

Problem:

An intelligent system can become'disoriented" and require the operator to redirect il onlo a more pred uclJve

palh of investigation (eg . lhe system Investigating an unproductive hypothesis or failing Io inve_;ligate a likely hypothesis).

Recommendation:

Operator intervention Into the reasoning process of the inteUigenf syslem can be used to manage errors In the Intelligenl system

Methods of intervention include modification of the reasoning process or selection of an allemate reasoning mechanism

Supporting Information:
Intervenlion Into Intelligent sys_m processing is one approach for redirecting a'disorlented* Intelligent syslem onto a more prcxluclive

path of _nvestlgation. The inteligent system must be designed, however. Io permll such Intervenllon To effectively fntervene m

processing, the operator musl fir= have a good ur,derslan01ng of the reasoning strategy used by the intelligent system

Example Illustrating Problem:

See the following page for an example that illustrates the problem

Example Illustrating Recommendation:

See the following page for an exam pie thai illuslrates the recommencetion.

Techniques:
Methods of intervening in Ihe method of pcocesslng information Include mediflCallOn ol the reasoning process or selection of an alternate

reasoning mechanism, Examples ol modification of Ihe reasoning process ere (1) setting processing priorities (eg, what hypothesis

Io invesllgate first), (2} alleration of hypotheses, and (3) speciflcallon ol alternale solutions.

Cross References:
The user interface used to intervene should reinlorce Ihe operators understanding of the reasoning ploc_s to assist in _dentlfymg

appropriate action See s_ction 4.1.2 for a alscussion of presenting information aDout Intell;gent syslem reasoning. See Ihe discussion

of risk in inlerverling in the intelligent system later In this section.

Research Issues:
Making inlelllgent "systems easily interruptable and redlractable, deve.lop_ng vocabularies for communicabng advice about control

decisions which reduce Ihe amount of knowledge required by human team memben; aboul Inle_ligenl system internals

Figure 1. Example of HCI Design Guidance, Page 1.

Topic:

EXAMPLE OF HCI GUIDANCE

Intervention Into Intelligent System Reasoning

AGENT INTERACTION ILLUSTRATING PROBLEM

In this case, the operator is unaJ3e to communicate

information about a likely fault and its correction

proce0ure to the intelligent system Unaware of this

information, the intelligent system wouk:l conUnue to

pursue fault isolahon on an incorrect set of suspeste0

faults, even when the aclual fault was corrected The

operator would have to do a restart to reset the knowledge

base and "fix" the mtetligent syslem F=gure illustrates

the agent interaction Illustration: Operator Restarting Intelligent System

AGENT INTERACTION IllUSTRATING RECOMMENDATION

In this case, the abildy to affect reasoning by altering

hypotheses used by the inlelhgent system has been prov_ed

to the operator. The operator "inlorms" the intelligent

syslem at)out the fault, performs a corrective procedure,

and normat processing to continues Figure illustrates the

agent interaction

Illustration: Operalor Informing Intetllgent System of • Fault

Figure 2. Example of HCI Design Guidance, Page 2.

533

• AGENTS

/,_FA UI. T MA NAG E MENT_.. • OPERA_ONAI
.:'__ _/:_._ _.,_/._, _ -_:" ENVlROM_EN"

'_:_i_:.N_ oO,.*'LEX,_
• DYNAMICS

• DEFICIENCIES

L__

3CENaRO6

ACTIVITY

SEQUENCES

AGENT

INTERACTION

Figure 3. Recommended Requirements Development Methodology.

information at the right time during tasl(
performance is difficult, and it requires different

tools from those which support user interface
design. Tools should support the representation
of information exchange items and the
interrelationships among these items.

User interface tools should also use information

exchange requirements for coordination and
communication among design team members.
This allows early and continued consideration of
the information exchanged between the user
interface and the applications components.

The preliminary design methodology developed in
conjunction with the UISIT prototype toolkit is
illustrated in Figure 4. It defines information

requirements early in the system design process
and supports coordination among design team
members. Analysis and preliminary design occur
first to derive high-level descriptions of
intelligent system functions, tasks, architecture,
and HCI. From these descriptions, requirements
are derived for the major software component
functions and for HCI information exchange.

Using information requirements, the design team
can be partitioned into smaller groups, with each

group performing a separate but coordinated and
concurrent design of a software component. As it
is discovered that requirements must change to
match constraints, the information requirements
can serve as a point of coordination among the
design team members. For instance, if the
intelligent system designer discovers that
additional information from the user is required
to complete an activity, the information exchange
specification serves as a single point of
coordination with the user interface designer.
The intelligent system designer and user interface
designer can prototype their software modules
separately while using the information exchange
specification to coordinate with one another.

User interface tools and methods should support
user interface prototyping. An especially
effective form of prototyping support is to
represent information requirements in the same
module which supports run-time information
exchange. This allows the separate prototyping of
the user interface and the applications modules. It
also requires the information exchange
specification to be stated unambiguously.

534

* Requirements Development : :"
t;

' . DeriveP,qmte:
P |Perform Analysis | Functlonl
* I & Prelim Design | " __ *

' I "Functlom _ "_SP '
I • Ticks _ " HC £

P I • Architecture | - _l

I -HCI _ :-Information : *t
P I _ ,_ Exchllnge : #
p ,_

.......... ip

s
s

.'"" t ActMtle " "

/
Detlgn Data Acquhllllon /

end Control 8oflware for HConlrolied Procelm (CP)

l:h,eiOnon1_.ge.167_em(is)
for Feult Manegement

_ Design Umer Interlace Solwere I

r......_..,.!l.,.(..e.) L
_., SemenD_llirl :I_

,".".,-, i I

Specfflcalty Supported :

Figure 4. Recommended UISIT Methodology.

Finally, it presents a design team member with
an extemal cue to coordinate changes with the

remainder of the design team.

Figure 5 illustrates how a software system built
with the aid of UISIT segregates the information

exchange specification from the specification of
the intelligent system and the data acquisition
software. This segregation allows each specialist

to apply unique expertise to a single software
component, while providing a means for

coordinating design team efforts through the
information specification module. When it is
discovered that a change needs to be made to the
information specification module, it is clear to all
involved that the change needs to be coordinated

with the other members of the development team.

In this way, the information specification module
serves as an abstraction of what each module

designer needs to know about the design of the
other modules.

Figure 6 shows an object hierarchy comprising
the information specification component of a

sample system built for UISIT evaluation.

The contents of the object hierarchy represent the

information requirements and their relationships
for PDRS DESSY. The object layer was
constructed within the UISIT framework, in

accordance to the suggested UISIT hierarchy.
Because it is encoded as an object layer,

supporting ran-time communications between the
user interface software and the applications

software, the information specification module is

unlikely to be misinterpreted by members of the
development team

RELATED WORK

In 1983, Norman outlined four strategies for

improving to human-computer interaction design.
Our recommendations for enhancing these

strategies are summarized below:

• Help the designer to maintain an awareness

of the user's needs. Rather than simply trying "to
impress upon the designer the seriousness of the

matter," we propose that it would be more
effective to assist in identifying user needs by

elevating analysis of information exchange

535

Controlled

Process

(cP)

Intelligent
Faul!

Software

Acquisition
and Control

Software

UISITProducls:InterfaceSoftware
f

'li !

: ,__,o°I[-
Specification ! • I UIMS Graphics

arid !'_ Module Module

Communication _ I
Module I I

I-. I(Rule B'')

(Object Layer) I - (Object Layer)

t
f

f
J

f
t
J

Hu man
Controller

Figure 5. UISIT-Supported Architecture.

between the software and the user to a functional

requirements level.

• Provide the designer with methods and

guidelines. Most assistance has concentrated on
support for evaluation of user interface designs.
We shift the focus to support for analysis of
information needed to support user tasks.

• Provide software tools for interface design.
As Norman suggests, this is a natural follow-on to
providing methods and guidelines. The software
tools can provide guidance in two ways: (1)
explicitly in the form of on-line guidelines,
templates, and examples; and (2) implicitly by the
design of the toolkit, which requires specific
architectural components and a specific sequence
of developmental steps. In either case, such tools
make it easier for the designer to follow the

prescribed methods and guidelines.

• Separate the interface design from other
programming tasks. While Norman's original
suggestion was based on such principles as
software reusability and interface modifiability,

we have found that this practice can also support
design team communication.

While we have been emphasizing HCI
development in our own work, we do not intend
to imply that user interface issues are
unimportant. We emphasize HCI development
because it is too often neglected. Both HCI and
UI challenges are important, and both are
necessary for effective system design. Without
effective HCI design, the UI designer may not
have a clear idea of the information exchange

goals he is trying to optimize, and the resulting
software may not support the user's task
performance. Without effective UI design, the
user interface may not convey the information
effectively, thereby detracting from the support
of the user's task performance. Since both types
of issues are necessary for effective design and
since HCI issues are often overlooked, we have
concentrated our work on HCI issues. There are

significant UI design challenges in monitor and
control of complex processes, due to the large
quantities of real-time information, accompanied
by deficiencies of the quality and availability of
this information.

536

i[I Ul i 'l_h. r.u ,]l|_l nil 1";1 _ 01 _1.1= I ;k'| i:q_r_] r_ _ i|lT. |

/
/ IS-PERFORHANCE

z / S-REPORT /_E-RULES

REMEDIES / D-AND-C-RULES

IqT-SY /1 _

/1 _ EE-RULES

u_-a_(_

_ ,- - Hem-RULeS
' _ (NPN-RULES

"_I'IRL-RUL[S

/ _YHPTOM$

HOOEL.OBJ(CT_ _AFUSE-BC 11A

_ Hy_in.R[ajty

_TOOnLE-SWITCH

HRL-AFT

ORS ,L. _ _--- HRL.FWO

_[H _ MRL'MIO

oRS-REPORT

S°PQWEP,_ _ _BACI(UP

PRIF4AA Y

Figure 6. Object tlierarchy and

TiI[_ m I ;I--JI l I U | I i I]1111_| d O] ;_,9 1 ;5"A II _qi l, L, ,J/]_ _r;Jl _r LI

Unl_ MPM tn k_owled|e b4_ PDRS°TRYI

Cre4t4d b 7 cLrro_l on 1-11-9l i):45:46

Modeled I_ 7 cJLrro I1 On 2-1-91 I1:$1:_1

Super ¢1_: POR$

Meml_r Of: CLASSES _ OENERiCUNiT$

Members: TOOOLAE-$WITCH, HYBRIO-RELAY, FUSE-BCtIA_ FUSE-CA21A

Mom10el' SLOT. COI'qPONENT-STATUS _Om HPt'I

I_4ri_1¢4 OVERRIDE.VALUE S

Vut_lass. ¸ (ONE OF POTEN'_AL-FAB_ FAIL)

Vat=_, ¸ UNKNOWN

SLOT- O(COI'IPOSITIOH.OiSJOIHT _rozn CLA._SES

X_rlea_c_: UNION

Fa_laa# ¸ (LIgT,Ot e CLA.tSES tn GENERICUHITS)

Comm4_4. ¸"

A AIJ)ot_t de_omponcton _ _, _ of

_J1_cl_14s Of _ c_ which lhaL_e no

mem_rs. Moro t_ o_e d._JoLn_

decompostt.ton ma]r be spe_t."_ed

V a l_ : UNKNOWN

Ovn slo_ IqEHBER$,OATATYPE _om CLASSES

I_1rz¢¢_c¢. ¸ OVERRIOE.VAJ.U[S

Fat_l_:_#. ¸ T.TYPE

Vat_: UHiT

slot- INEI.III(RSHIP _m CLASSES

l_i_'_ce. ¸ HE THO0

_ral_laJs ¸ ME THO0

Car_i_hry_,Tax. 1

_ _=Lr. MF..M_ - Dl_ O _gT'P eAdl_T_OD

$1Ot_ HPM'COkI_JUND fro_ MPH

l_d_exz_e " OVERRIOE.VALUE$

Vot_l_r,_#; (ONE,OF _'TOW DEPLOT)

F _ t_ma : UNKNOWN

_ MPN-$TATE _mn= MPH

Fal=_'l=_m: (ONE,OF DE.1PLOYED I_-_ STOWED)

Fa_, UNX.NOH'N

_vD _ HPM*STATUS _m NPt4

Sample Definition for U1SIT Communication Layer.

Because the conclusions of this report are based
on the study of intelligent systems for real-time
fault management, the reader may be concerned

about how well they generalize to other types of
software systems, especially in view of Leveson's
(1990) warning that applying common data
processing approaches to process control systems
can lead to disaster. We believe that our results

for HCI design guidance are applicable to

complex software systems. Complex software
systems are characterized by (1) large amounts of
information from multiple sources, (2)
sophisticated software capability, often with

multiple tasks performed concurrently or jointly
by human and computer, (3) time-constrained
processing with deficiencies in information

quality and availability, and (4) active information

exchange between human and computer. Our
results on development methodology and tools

appear to be generalizable to a broader set of
systems, in particular systems where information
exchange between human and computer represents
a significant aspect of using the software.

SUMMARY

This paper has introduced an on-going research
project to improve human-computer interaction

for fault management intelligent systems. This
issue is being investigated by means of a case
study, by participation in intelligent system

design, and by prototyping methods and tools.
Preliminary results indicate that elevating tlCI

information exchange requirements to the level of
software functional requirements is critical to

designing software which supports user task
performance. The following is a summary of the
findings from this research effort:

1. HCI Design Guidance for Information
Requirements
• User interface design guidance, which

focuses on visual appearance and style of

information presentation, should be extended HCI,
to also assist designers in developing information

requirements.
• HCI design guidance should be integrated
within a development methodology that supports

use of these guidelines.

537

2. Development Methodology for Information
Requirements
• Task analysis and task description
techniques should be modified to identify human-
intelligent system coordination activities and to
support identification of information
requirements.
• Developers should adopt a methodology
that makes guidance easier to use and integral to
the development process from the early stages of
analysis and design.
° Mechanisms for communication of

information requirements and coordination of
design activities among members of the
development team should be provided with the
methodology.

3. User Interface Tools and Methods for

Information Requirements
• User interface tools should support
information requirements development and should
include explicit representation of information
items and the interrelationships among them.
• User interface tools should provide
information requirements as a point of
coordination and communication among members
of development team.
• User interface tools should represent
information requirements in the same module that
supports run-time information exchange.

REFERENCES

Johns, G. (1990, September). Graphic Interfaces
to Intelligent Fault Management Systems: Issues
and Guidelines (Report No. MTR-90W00103).
McLean, VA: The MITRE Corporation.

Leveson, N. G. (1990, November). "The
Challenge of Building Process-Control Software."
IEEE Software, 7(6), 55-62.

Marshall, C. (1991, March). "Ergonomics Is
Dead: Long Live Ergonomics." Human Factors
Society Bulletin, 34 (3), 4-6.

Malin, J. T., Schreckenghost, D. L., Woods, D.
D., Potter, S. S., Johannesen, L., Holloway, M., &
Forbus, K.D. (1991, July). Making Intelligent
Systems Team Players: Case Studies and Design
Issues, Volume 1. Human-Computer Interaction
Design (NASA Technical Memorandum).
Houston, TX: NASA-Johnson Space Center.

Mitchell, C. M. (1987). "GT-MSOCC: A
Domain for Research on Human-Computer
Interaction and Decision Aiding in Supervisory
Control Systems." IEEE Transactions on
Systems, Man, and Cybernetics, 17(4), 553-572.

Norman, D. A. (1983, December). "Design
Principles for Human-Computer Interfaces." CHI
'83 Proceedings. New York: ACM, 1-10.

Roman, G. C. (1985, April). "A Taxonomy of
Current Issues in Requirements Engineering,"
IEEE Computer, 18(4), 14-21.

Woods, D. D., & Eastman, M. C. (1989).

"Integrating Principles for Human-Computer
Interaction into the Design Process:
Heterarchically Organized HCI Principles." In
Proceedings of lEEE International Conference on
Systems, Man, and Cybernetics, IEEE.

538

